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1. Introduction

Real-life signals are mainly non-stationary, i.e. their features change over time or 
space, and are produced by nonlinear phenomena. This implies that classical signal 
processing methods, like Fourier or Wavelet Transform, can prove to be limited for the 
analysis and decomposition of such signals. For this reason in the late 90s, a group of 
researchers at NASA headed by Norden Huang developed a completely new approach 
for non-stationary signal processing called Empirical Mode Decomposition (EMD).

The EMD method, the first of its kind, is based on the iterative computation of the 
signal moving average via envelopes connecting its extrema. The computation of the 
signal moving average allows to split the signal itself into a small number of simple and 
non-stationary oscillatory components, called Intrinsic Mode Functions (IMFs), which 
are separated in frequencies and almost uncorrelated [1].

EMD proved to be a really powerful method in many applied fields of research [2–8]. 
However, it is prone to instability and the so-called mode-mixing [9]. For this reason, 
many EMD variants have been proposed over the years, like the Ensemble Empirical 
Mode Decomposition (EEMD) [9], the complementary EEMD [10], the complete EEMD 
[11], the partly EEMD [12], the noise assisted multivariate EMD (NA-MEMD) [13] and 
many others. They all allow us to address the instability issue as well as to reduce the 
so-called mode mixing problem. However, EMD and all these variants are still missing 
a rigorous mathematical analysis, due to the usage of a number of heuristic and ad 
hoc elements for the computation of the signal moving average. Some results have been 
presented in the literature [13–15], but a complete analysis is still missing.

Given these limitations, but also the considerable attention garnered by these method-
ologies within the global scientific community, numerous research groups have embarked 
on investigations into this domain, proffering alternative approaches to signal decomposi-
tion. Noteworthy methodologies include the Variational mode decomposition [16], sparse 
time-frequency representation [17,18], Blaschke decomposition [19], Geometric mode de-
composition [20], Empirical wavelet transform [21], and analogous techniques [22–24]. 
All these techniques hinge on optimization relative to a predetermined basis.

The sole alternative method presented in existing literature founded on iterative prin-
ciples and thus obviating the need for a priori assumptions about the signal under study 
is the Iterative Filtering (IF) algorithm [25]. We recall here also its fast implementation 
via FFT, denoted as Fast Iterative Filtering (FIF) [26], along with its extensions, namely 
Adaptive Local Iterative Filtering (ALIF) [27] and Resampled Iterative Filtering (RIF) 
algorithms [28,29], which are designed to handle signals characterized by pronounced 
non-stationarities, such as chirps, whistles, and multipath. Despite their recent publi-
cation, these iterative methods have found effective application across diverse domains 
[30–40].

The structural framework of the IF, ALIF, and RIF algorithms mirrors that of EMD, 
with the primary divergence lying in the computation of the signal moving average. Un-
like EMD, these methods compute the signal moving average through convolution with 
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a preselected filter function, as opposed to employing the mean between two envelopes. 
This seemingly straightforward distinction has paved the way for a comprehensive mathe-
matical analysis of IF, ALIF, and RIF. Notably, [26] and [14] delve into the mathematical 
analysis of the IF algorithm, identifying a priori conditions for its convergence. In [41], 
the examination of boundary effects in the IF algorithm is conducted, presenting a for-
mula to preemptively estimate the extent of error propagation within each component 
of a decomposition. [42] introduces a methodology to mitigate boundary effects across 
decomposition algorithms, including IF, and investigates IF’s efficacy in segregating com-
ponents originating from stochastic processes. Building on the analyses conducted for 
EMD [43] and Synchrosqueezing [44], [45] scrutinizes IF’s ability to disentangle two 
stationary frequencies within a signal. Lastly, [28], [29], and [46] delve into the con-
vergence of the ALIF method and propose the alternative, faster, and convergent RIF 
algorithm.

EMD and IF methods have been extended to deal with higher dimensional [47–50]
and multivariate signals [51,52] defined in a Euclidean space. Regarding the extension of 
this method to non-Euclidean spaces, and in particular, to the case of a sphere, a version 
of EMD has been proposed in the paper [53], whereas IF has never been extended yet. 
However, there are many interesting real-life applications in which the data are sampled 
on a spherical domain. We can think, for instance, of measurements regarding the Earth, 
like the surface temperature [54] and pressure [55], or geophysical quantities measured via 
satellites, like the Earth’s magnetic and electric field as measured by the ESA [56], NOAA 
[57] and CNSA [58] missions, and the Earth’s gravitational field [59], or astrophysical 
measurements, like the cosmic microwave background [60]. All these kinds of data have 
been studied so far using classical linear approaches, like spherical harmonic analysis 
and Fourier transform in higher dimension [61–64]. There is thus a need to develop new 
algorithms able to handle the nonstationarities contained in these signals.

In this work, we propose an extension of IF to spherical data and study the a priori 
convergence of this method in the discrete setting. The work is organized as follows: 
in Section 2 we review IF and introduce its generalization to the sphere. In Section 3
the theory of spectral symbol is used in order to study the convergence properties of the 
proposed method. The theory of Generalized Locally Toeplitz (GLT) theory is recalled in 
a self-contained fashion in Appendix A for the case of 2-level GLT sequences, and used 
to derive the results of Section 3. Section 4 reports a convergent version of Spherical 
Iterative Filtering (SIF) and numerical examples of its application. The paper ends with 
conclusions and future research directions.

2. Iterative Filtering and its adaptation to the sphere

In order to have a better understanding of how we adapted Iterative Filtering on the 
sphere, it is useful to have a brief description of the original algorithm.
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2.1. How Iterative Filtering works

As stated in the introduction, the key difference between EMD and Iterative Filtering 
(IF) is the computation of the local average. As stated in the name, in IF methods the 
computation of the local average is made through filtering, which means convolution 
with a function called a filter.

Definition 1.

(1) A function w : [−l, l] → R is a filter if it is nonnegative, even, bounded, continuous, 
and 

∫
R w(t) dt = 1.

(2) A double convolution filter w is the self-convolution of a filter w̃, that is w = w̃ ∗ w̃.
(3) The size, or the length, of a filter w is half the measure of its support.

Before describing the pseudo-code of Iterative Filtering, it is necessary to define the 
Sifting operator. This operator will be applied iteratively in the IF methods in order to 
extract the Intrinsic Mode Functions (IMF).

Definition 2 (Sifting operator). Let f ∈ L2(R) be a filter. The moving average of a signal 
g ∈ Rn can be computed as

L(g)(x) =
∫
R

g(t)f(x− t)dt. (1)

The associated sifting operator is M : L2(R) → L2(R) s.t.

M(g)(x) := (g − f ∗ g)(x) = g(x) − L(g)(x) (2)

In practical applications we always study the signal g(x) on an interval, say [0, 1]. 
Outside this interval, the signal is usually not known, so we have to impose some bound-
ary conditions, discussed for example in [41,42]. In particular, in [42] the authors show 
how any signal can be pre-extended and made periodic at the boundaries, for exam-
ple, by reflecting the signal on both sides and making it decay. Therefore, for simplicity 
and without losing generality, we will assume that the signals to be decomposed are 
1-periodic.

In a discrete setting, a signal is usually given as a vector of sampled values g =
[gi]i=0,...,n−1 where gi = g(xi) and xi = i/n for i ∈ Z. As a consequence, one can 
discretize the IF moving average (1) with a simple quadrature formula

L(g)(xi) =
∫

g(z)f(xi − z) dz ≈ 1
nK

∑
j∈Z

gjf(xi − xj). (3)

R
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Since the filter f(z) has compact support of size 2L, the above formula is always well-
defined. Here K is a normalizing constant depending on f(z) and n defined as

K := 1
n

∑
j∈Z

f(xi − xj) ≈
∫
R

f(z) dz = 1

ensuring that the quadrature formula actually performs a local convex combination of 
the signal points gi, akin to the averaging operation performed by the convolution in the 
continuous case.

Equation (3) can be expressed through a Hermitian circulant matrix F with first row

f1 := 1
nLK

[
f(0), f

(
1
nL

)
, . . . , f

( s

nL

)
, 0 . . . 0, f

( s

nL

)
, . . . , f

(
1
nL

)]
where s = �nL� < �n/6�. The sampling vector of M(g) on the points x0, x1, . . . , xn−1, 
that we indicate as M(g), is thus rewritten as a matrix-vector multiplication

M(g)(xi) = gi − L(g)(xi) =⇒ M(g) = (I − F )g. (4)

Theorem 1 ([26]). Given a signal g ∈ Rn, assuming that we are considering a double 
convolution filter, the iterated application of the Sifting operator to the sampling of the 
signal converges to

IMF1 = lim
m→∞

(I − F )mg = UZUTg (5)

where Z is the diagonal binary matrix containing in the diagonal an entry equal to 1 in 
correspondence to each zero component of the discrete Fourier Transform of the filter f , 
and U is the orthogonal matrix containing, as columns, the Fourier basis vectors.

This theorem guarantees the a priori convergence of the IF algorithm for any possible 
signal g. The pseudocode of the discrete Iterative Filtering is reported in Algorithm 1.

Algorithm 1 Discrete Iterative Filtering IMF = DIF(g).
IMF = {}
while the number of extrema of g ≥ 2 do

compute the filter length l for g and generate the corresponding convolution matrix F
g1 = g
while the stopping criterion is not satisfied do

gm+1 = (I − F )gm

m = m + 1
end while
IMF = IMF∪ {gm}
g = g − gm

end while
IMF = IMF∪ {g}
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The algorithm would run infinitely many times. To have finite time computations it 
is possible to use a stopping criterion. In the literature, the standard stopping criterion 
used [25] is the relative error in norm 2

‖Fp+1
m (gm) −Mp

m(gm)‖2

‖Fp
m(gm)‖2

≤ δ, (6)

for a prefixed δ > 0.
In the following, we want to extend these results to the case of the sphere.

2.2. The spherical setting

2.2.1. A useful operator
The topology of S2 is the main difference from the classic setting of Iterative Filtering. 

In fact, since the sphere is not diffeomorphic to a portion of R2, at least two charts are 
necessary to make an atlas, as a consequence, it is impossible to extend the convolution 
as it is defined on Rn.

In the literature, many operators have been defined on the sphere in order to adapt 
some of the properties of the convolution. In particular, the most interesting one that 
fits better our necessities is the one called isotropic convolution. Before its definition, it 
is necessary to describe some properties of SO(3), the rotation group of the sphere.

Each point of S2 can be expressed in its spherical coordinates as w = (θ, ϕ) where 
θ ∈ [0, 2π) and ϕ ∈ [−π/2, π/2]. Given f ∈ H0(S2), where H0(S2) := {f ∈ L2(S2) :
f(θ, ϕ) = f(θ)} which is the subset of functions in L2(S2) with azimuthal/rotational 
symmetry about the north pole axis, it is easy to see that ∀ρ ∈ SO(3), ∃r0 ∈ S2 s.t.

Rρf(z) = Rr0f(z),

where Rr0(f) can be seen as a translation of the axis of f , that now is the one passing 
through r0. That said, it is possible to introduce the following notation:

fr0 := Rr0f

and the convention that if f ∈ H0(S2), then f0 := f .
Now we are ready to define the following.

Definition 3 (Isotropic convolution on the sphere). Let g ∈ L2(S2), f ∈ H0(S2), their 
isotropic convolution g � f is defined as:

g � f(r) =
∫
S2

g(w)fr(w)dw

It is useful to notice some interesting properties of this operator. First of all, the 
isotropic convolution is very different from a convolution, mainly for the strong requests 
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on the function f . Another observation is that the resulting function is defined on S2

thanks to the property mentioned above of the action of SO(3) for functions in H0(S2). 
If f was a generic function in L2(S2), the resulting function would have been defined on 
SO(3). Finally, we present another definition of isotropic convolution that can be seen 
in literature [65], but it is clear that the meaning remains the same.

Definition 4 (Isotropic convolution on the sphere). Let g ∈ L2(S2), F ∈ L2([−1, 1]), their 
isotropic convolution g � F is defined as:

g � F (r) =
∫
S2

g(w)F (r · w)dw

It is easy to prove that Definition 3 and Definition 4 are equivalent when F (n · w) =
f(w) with n being the north pole. In fact, notice that changing the vector n to r corre-
sponds to a rotation of the function f . This alternative definition is interesting because 
it makes clearer the role of F as a kernel: it modulates the values of g, depending on the 
distance from a certain point r.

2.2.2. Adaptation of Iterative Filtering to the sphere
The isotropic convolution allows us to adapt Iterative Filtering to the spherical case. 

Taking f with connected support, non-negative, with ||f ||L1 = 1 and, as requested, 
axially symmetric, then it can be seen as a weight function that we can use to evaluate 
the local average around the north pole. Hence 

∫
S2 g(w)fr(w)dw can be seen as the 

evaluation of the local average of the function g in r, using f as a weight function on this 
manifold. From now on, a function f is a filter if it possesses all the above properties.

Now it is possible to define the main operator.

Definition 5 (Sifting operator on the sphere). Let f ∈ H0(S2) be a filter. Its associated 
sifting operator is M : L2(S2) → L2(S2) defined as

M(g)(r) := (g − g � f)(r) = g(r) −
∫
S2

g(w)fr(w)dw

It is easy to show that this operator is linear and bounded. In order to have the 
convergence of the limit

lim
n→∞,n∈N

Mn(g) (7)

∀g ∈ L2(S2), it is necessary to prove that ||M||op ≤ 1.
Since we want to study the discretized version of this operator, we have to study 

if the spectral radius ρ(M) ≤ 1 for the sifting operator obtained from a certain filter 
function f . Since the only eigenvalue of the identity is 1, it is necessary to study the 
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discretized version of the operator · � f and see when its eigenvalues are in the complex 
circle centered in 1 with radius 1.

To proceed, it is necessary to define the discretization grid and methods: the elements 
of the mesh grid are called {zj}j , and their associated partition of the sphere is {Sj}j , 
such that 

⋃
j Sj = S2 and Si ∩ Sj = ∅ if i �= j and each zj is an interior point of the 

associated Sj .
Now, the isotropic convolution can be written as:

g � f(r) =
∫
S2

g(w)fr(w)dw =
∑
j

∫
Sj

g(w)fr(w)dw

If we study this operator only for g in the subspace of L2(S2) generated by {χSj
}j , it is 

possible to define the matrix associated with this operator as:

Bk,j := 1
σ(Sk)

∫
Sk

∫
Sj

fr(w)dσ(w)dσ(r) (8)

Where σ(Sk) is the measure of Sk as a set on the surface of the unitary sphere. It is 
interesting to notice that the normalization and the first integral are necessary in order to 
evaluate the average of the resulting smoothed function and to project it in span({χSj

}j). 
On the other hand, the second integral is necessary to describe the isotropic convolution. 
It is easy to prove that B is stochastic since its elements are non-negative and the sum 
of the elements on one row is

∑
j

1
σ(Sk)

∫
Sk

∫
Sj

fr(w)dσ(w)dσ(r) = 1
σ(Sk)

∫
Sk

∫
S2

fr(w)dσ(w)dσ(r)

= 1
σ(Sk)

∫
Sk

||fr||L1dσ(r) = 1

An interesting property of this class of matrix is that its spectral radius is 1.
It is useful to identify the necessary conditions for (7) to converge when the operator 

M coincides with its discretized version I −B.

Lemma 1. A necessary condition for the operator limit (7) to converge when M = I−B

is that the spectrum of the associated operator B is contained in {z ∈ C : ||z − 1|| ≤ 1}.

Proof. A necessary condition for the convergence of (7) is that the spectral radius of 
M is ≤ 1. Since all the eigenvalues of B are a translation of the eigenvalues of M, this 
condition can be rewritten as ∀λ ∈ ΛB , ||1 − λ|| ≤ 1. In this way, we have obtained a 
necessary condition on the eigenvalues of B for the convergence of (7). �
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2.2.3. Conic filters and Driscoll-Healy mesh grids
Since the positivity of the eigenvalues is not granted, we choose a certain filter f0 and 

study the behavior of its eigenvalues when discretized on a certain family of mesh grids 
on the sphere. The following function is called the truncated cone and it can be shown 
to be a filter.

f0(θ, ϕ) = (R− ϕ)+

C
= (R− d((0, 0), (θ, ϕ)))+

C
and

f(θ′,ϕ′)(θ, ϕ) = (R− d((θ′, ϕ′), (θ, ϕ)))+

C
(9)

Where R is the radius of the filter, C a normalizing constant, and d is the spherical arc 
distance (called also great-circle, orthodromic or spherical distance) between two points 
that can be expressed as

d((θr, ϕr), (θw, ϕw)) = arccos(sinϕr sinϕw + cosϕr cosϕw cos(θr − θw)). (10)

The grid we decided to study is similar to a Driscoll and Healy mesh grid: N2 points 
equally spaced in longitude and latitude, excluding the poles. We decided to use this 
type of discretization since it is close to the way satellite data are collected.

We thus define the regular grid on [0, 2π) × [−π/2, π/2] with parameter N as

zi,j = ((2i− 1)h,−π/2 + (j − 1/2)h) , i, j = 1, 2, . . . , N, h = π

N
� 1 (11)

where the zi,j can be seen as the center of the rectangles

Si,j = [2(i− 1)h, 2ih] × [−π/2 + (j − 1)h,−π/2 + jh]. (12)

Let us now consider the matrix B as defined in (8), and substitute the rectangles Si,j

defined in (12), whose centers are the points zi,j , to obtain

B(i,j),(p,q) = 1
σ(Si,j)

∫
Si,j

∫
Sp,q

fr(w)dσ(w)dσ(r). (13)

The filter in (9) is continuous and symmetric in w, r, so for h → 0 one has that fr(w) ≈
fzi,j (zp,q) when r ∈ Si,j and w ∈ Sp,q, therefore

B(i,j),(p,q) ≈ σ(Sp,q)fzi,j (zp,q).

We can thus take the N2 ×N2 matrix called B(N) as the discretization of the isotropic 
convolution, whose (i, j), (p, q) element is

B
(N)
(i,j),(p,q) = σ(Sp,q)fzi,j (zp,q) = 2σ(Sp,q)

(R− d(zi,j , zp,q))+
, (14)
R− sin(R)
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where we substituted the value for the normalizing constant C, computed in (A.14). In 
the following section, we analyze the spectral properties of B(N) to check if it satisfies 
the hypotheses of Lemma 1.

Remark 1. One could approximate the moving average of the signal more precisely as∫
S2

g(w)fr(w)dσ(w) ∼
∑
p,q

g(zp,q)
∫

Sp,q

fr(w)dσ(w),

but it is immediate to see that∣∣∣∣∣∣∣σ(Sp,q)fr(zp,q) −
∫

Sp,q

fr(w)dσ(w)

∣∣∣∣∣∣∣ ≤ σ(Sp,q) diam(Sp,q) = O(h3)

and it is zero whenever dist(r, Sp,q) ≥ R. This approximation error is so small that it 
can be proven to be negligible for the following analysis.

3. Spectral analysis and convergent version of the algorithm

3.1. Spectral analysis

From Lemma 1, it is evident that the spectral properties of the discretized Isotropic 
Convolution B(N) as defined in (14) are fundamental to check the convergence of the 
method. We thus turn to the theory of Spectral Symbols and Generalized Locally Toeplitz 
(GLT) sequences of matrices to analyze the asymptotic behavior of its spectrum for big 
N , i.e. when the mesh grid on the sphere is fine.

For the sake of the readability of the document, we postpone to Appendix A a 
self-contained introduction to the theory of GLT sequences, and further references for 
interested readers. Here we only introduce the notion of spectral symbol for a sequence 
of matrices that will be useful to understand the final result.

We say that a matrix-sequence {A(N)}N admits a spectral symbol (or for short, just 
symbol) f(x) when the sampling of f(x) on a uniform n-grid over its domain yields an 
approximation of the eigenvalues of A(N), that gets better as N → ∞. In a sense, the 
symbol encodes the asymptotic behavior of the spectrum for the whole sequence, thus 
proving to be an invaluable tool for the analysis of iterative methods that make use 
of the sequence. The same concept can be expressed also for the singular values of the 
matrices in the sequence, and the rigorous formal definition for the symbol is based on 
an ergodic formula that must hold for every test function F ∈ Cc(C) (Cc(R)) as follows.

Definition 6 (Asymptotic singular value and eigenvalue distributions of a matrix-
sequence). Let {A(N)}N be a matrix-sequence with A(N) of size N2 × N2, and let 
f : Ω ⊂ Rd → C be measurable with 0 < μd(Ω) < ∞.
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• We say that {A(N)}N has an asymptotic eigenvalue (or spectral) distribution de-
scribed by f if

lim
n→∞

1
N2

N2∑
i=1

F (λi(A(N))) = 1
μd(Ω)

∫
Ω

F (f(x))dx, ∀F ∈ Cc(C). (15)

In this case, f is called the eigenvalue (or spectral) symbol of {A(N)}N and we write 
{A(N)}N ∼λ f .

• We say that {A(N)}N has an asymptotic singular value distribution described by f
if

lim
n→∞

1
N2

N2∑
i=1

F (σi(A(N))) = 1
μd(Ω)

∫
Ω

F (|f(x)|)dx, ∀F ∈ Cc(R). (16)

In this case, f is called the singular value symbol of {A(N)}N and we write 
{A(N)}N ∼σ f .

We postpone to Appendix A the very technical proof of the following result, in which 
we identify the spectral symbol for the sequence of matrices {B(N)}N for N → ∞ as 
defined in (14). In this case, the symbol is referred to both the eigenvalues and the 
singular values of the matrices.

Theorem 2. Let m := RN/π and define

at,s(x1, x2) := 6 sin(πx2)
(m−

√
s2 + 4t2 sin(πx2)2)+

m3π

for any t, s ∈ Z. If RN is constant for any N , and B(N) is as in (14), then

{B(N)}N ∼λ,σ κ(x,θ) :=
∑
t,s∈Z

at,s(x) exp(i(tθ1 + sθ2)).

Notice that to satisfy the hypotheses of Lemma 1, the matrix B(N) must in particular 
have all eigenvalues with nonnegative real parts. In the next section, we show that this 
does not always hold by studying the symbol in Theorem 2.

3.1.1. Counterexample to convergence
Already for m = 2 the symbol κ(x, θ) in Theorem 4 is negative somewhere on its 

domain. From (A.17),

κ(x,θ) =
∑
t,s∈Z

3 sin(πx2)
(2 −

√
s2 + 4t2 sin(πx2)2)+

4π exp(i(tθ1 + sθ2))
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but since m = 2, the only nonzero terms are for s = 1, 0, −1, i.e.

κ(x,θ)

= 3 sin(πx2)
4π

∑
t∈Z

exp(itθ1)
[
2 cos(θ2)(2 −

√
1 + 4t2 sin(πx2)2)+ + 2(1 − |t| sin(πx2))+

]
and for θ = (0, π) we can further simplify into

κ(x, (0, π)) = 3 sin(πx2)
2π

∑
t∈Z

(1 − |t| sin(πx2))+ −
(
2 −

√
1 + 4t2 sin(πx2)2

)+
.

For x2 → 0, both terms in the sum become quadrature formulas that converge to definite 
integrals. In particular,

sin(πx2)
∑
t∈Z

(1 − |t| sin(πx2))+
x2→0−−−−→

1∫
−1

1 − |x| dx = 1

sin(πx2)
∑
t∈Z

(
2 −

√
1 + 4t2 sin(πx2)2

)+ x2→0−−−−→
1/2∫

−1/2

2 −
√

1 + 4x2 dx = 2 − π

4

and ultimately,

κ(x, (0, π)) x2→0−−−−→ 3
2π

(π
4 − 1

)
< −0.1

so κ(x, θ) is negative in an open neighborhood of the line ((x1, 0), (0, π)) ∈ [0, 1]2 ×
[−π, π]2.

This example shows that whenever R = 2π/N , the symbol of the sequence {B(N)}N
is strictly negative on a non-negligible section of its domain. In turn, this means that the 
number of eigenvalues in B(N) whose real part is strictly negative will be of the order of 
γN2, where 0 < γ is constant. This is a considerable number of eigenvalues that may lead 
the Iterative Filtering method to fail to converge due to Lemma 1. A similar argument 
can be conducted for many different non-conic filters, leading to similar results.

As a consequence, we need to introduce a variation in the algorithm in order to ensure 
its convergence.

3.2. Convergent extension of Iterative Filtering on the sphere

From all previous results, it is clear that for generic filters, like cone filters, the exten-
sion of Iterative Filtering to spherical geometry is not convergent in general. It is possible 
to create a parallelism between the extension of Iterative Filtering to spherical geometry 
and the so-called Adaptive Local Iterative Filtering (ALIF) for 1D data. In both cases, 
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the filter changes size and shape point by point. In the case of spherical data, this comes 
as a consequence of the discretization we choose for the sphere. In ALIF this is the main 
feature of the algorithm. If we vectorize the data defined on the sphere that we want to 
decompose and treat them as if they were a 1D signal, the decomposition approach can 
be reformulated as a special case of the ALIF algorithm.

The convergence of ALIF, at least in the formulation presented in [27] where the 
scaling of the filter is done linearly point by point, is not known. But it can be made 
convergent by multiplying the transpose of the operator associated with the filter with 
the operator itself. This is what is done in the so-called SALIF algorithm [28]. The idea 
is that the iterative sifting operator I − B applied to a discretized signal g tends to 
extract the component of g in a neighborhood of the kernel of B when the condition for 
convergence is satisfied. If we modify the sifting operator into I − cBTB we notice that 
the kernel of B is equal to the kernel of cBTB where c > 0 is a normalization constant 
chosen so that ‖cBTB‖ = 1.

Following the same approach, in the extension of iterative filtering to spherical ge-
ometry we can substitute the operator B in (13) with the operator cBTB. In doing so 
all eigenvalues become real, contained in the interval [0, 1] and semi-simple. Hence, the 
algorithm converges a prior due to Lemma 2.

This is what we call from now on the Spherical Iterative Filtering (SIF) technique. 
The SIF pseudocode is reported in Algorithm 2.

Algorithm 2 Spherical Iterative Filtering IMF = SIF(g).
IMF = {}
while the number of extrema of g ≥ 2 do

compute the filter length l for g and generate the corresponding convolution matrix B and the constant 
c = ‖B‖−2

g1 = g
while the stopping criterion is not satisfied do

gm+1 = (I − cBTB)gm

m = m + 1
end while
IMF = IMF∪ {gm}
g = g − gm

end while
IMF = IMF∪ {g}

Lemma 2. The inner loop of Algorithm 2 always converges.

Proof. The convergence of this algorithm has already been proved in a much more generic 
case in Corollary 13 of [28]. Anyway, the proof is simple.

By definition, BTB is symmetric and positive semidefinite. Moreover, thanks to the 
normalization constant c, all the eigenvalues of cBTB are contained in the interval [0, 1]. 
Given the eigendecomposition cBTB = UDUT with D diagonal and U orthogonal, the 
inner loop of the SIF Algorithm 2 converges whenever (I − cBTB)m = U(I −D)mUT

converges for m → ∞. As stated before, the eigenvalues of cBTB lie in [0, 1], so the same 
holds for (I −D)m for any m, thus all their diagonal entries converge to either 0 or 1.
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Fig. 1. In the left panel, we find the real part of the eigenvalues of B obtained using: double integration, 
solid blue; the approximation described in (A.18), solid red; and GLT sequence approximation, solid yellow. 
In the right panel, we find a zoomed-in version of the same plot on the horizontal interval [0, 0.2]. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Hence the algorithm converges a priori. �
Regarding the computational complexity of Algorithm 2 it is possible to ease the 

computational complexity of the inner loop. A naive way to execute that part of the 
algorithm is to evaluate I − cBTB before the start of the while loop, then iterate a 
matrix-vector multiplication until the stopping criterion is satisfied. The matrix-matrix 
multiplication has a computational cost of O(n3), which can be simplified by not comput-
ing the full matrix cBTB, but by doing a double matrix-vector multiplication BT (Bgm)
at each iteration. In doing so, the computational cost of every iteration remains O(n2), 
but there are no additional costs outside the loop.

Some other considerations regarding this type of algorithm can be found in [28].

4. Numerical examples

In this section, we run numerical tests of the theoretical results presented in this 
work.1 In particular, in a first test, we study the spectrum of the matrix B associated 
with the generalization of the Iterative Filtering algorithm via straight isotropic convo-
lution. In a second test, we apply both the direct generalization of the Iterative Filtering 
algorithm via isotropic convolution and the proposed convergent Spherical Iterative Fil-
tering method to an artificial signal.

4.1. Test 1

In this first test, we evaluate the eigenvalues of the matrix B, as defined in (13), for 
the radius value of π

10 and a mesh grid as in (11) with N = 100.
In Fig. 1 we report the real value of the eigenvalues of B in increasing order computed 

using double integration, reported in solid blue, the approximation described in (A.18), 

1 Codes are available at www .cicone .com.

http://www.cicone.com
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Fig. 2. In the left panel we show the real part of the eigenvalues for the GLT sequences associated with 
mesh grids with increasing precision. In the right panel we find a zoomed-in version of the same plot on the 
horizontal interval [0, 0.2].

Fig. 3. Left panel: test signal containing two circular waves of different periodicity. Central panel: first 
component obtained applying the Sifting operator I−B to the signal shown on the left panel for 5 iterations. 
Right panel: the error computed as the absolute value of the difference between the component obtained 
after 5 iterations and the ground truth component we want to extract.

solid red, and the approximation obtained using the GLT sequence. This last one, in 
particular, is known to represent the spectrum of the matrix up to a o(n) of eigenvalues 
which cannot be approximated. If we zoom in on the horizontal axis on the interval 
[0, 0.2], we can see that all approaches confirm the presence of eigenvalues with negative 
real parts. If we increase the grid size to N = 200 and N = 1000 we confirm the presence 
of eigenvalues with negative real parts, Fig. 2.

We recall that for the spectrum of BTB, which is the stabilized version of the operator 
B which is used in the SIF algorithm, there is no need to approximate its eigenvalues 
since it is known a priori that they are all real and positive.

4.2. Test 2

In this second test, we apply the generalization of the Iterative Filtering algorithm 
via straight isotropic convolution and the SIF method, presented in Algorithm 2, to 
an artificial signal defined on the sphere, ref. Fig. 3 left panel. The artificial signal is 
constructed to contain two circular waves with different periods centered at different 
locations on the sphere.
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Fig. 4. Left panel: test signal containing two circular waves of different periodicity. Central panel: first 
component obtained applying SIF to the signal shown on the left panel for 5 iterations. Right panel: the 
error computed as the absolute value of the difference between the IMF obtained after 5 iterations and the 
ground truth component.

Fig. 5. Left panel: L2 norm curves of the error for the first 200 iterations of the generalization of the Iterative 
Filtering algorithm via straight isotropic convolution and SIF. Right panel: a plot of the real part of the 
eigenvalues for the matrix B associated with a conic filter of radius π

20 as computed via double integration, 
solid blue, the approximation described in (A.18), solid red, and GLT sequence approximation, solid yellow.

We first apply the nonconvergent matrix B defined in (13) for the radius value of 
π
20 and a mesh grid as in (11) with N = 100. The real parts of its spectrum elements, 
approximated using the approaches reviewed in Test 1, are shown in the right panel in 
Fig. 5. Results of the application of 5 iterations of the generalization of the Iterative 
Filtering algorithm via straight isotropic convolution are shown in the center and right 
panel of Fig. 3. In particular, the central panel shows the first IMF extracted by the 
algorithm after 5 iterations, whereas the right panel represents the difference between 
this extracted IMF and the ground truth component. It is important to mention that the 
stopping condition (6), which is necessary in order to stop the iterative application of the 
Sifting operator, is not satisfied for any iteration up to 200 and the reported component 
in the central panel of Fig. 3 is the closest sifted signal to the ground truth reached by 
the algorithm in all the 200 iterations. This is another consequence of the divergence of 
the operator B.

In Fig. 4 we report the results obtained by applying the convergent SIF method to 
the same signal until the stopping criterion (6) is satisfied. In this case, the algorithm 
iterates 5 times. From the right panel in Fig. 4, we can see that the error is drastically 
reduced. It is interesting to notice that the error is stronger in the region of the sphere 
where the two waves meet.
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If we let both algorithms run for 200 iterations and measure the L2 norm of the error 
between the computed IMF and its ground truth, we obtain the curves shown in the left 
panel of Fig. 5. It is evident from these curves that the generalization of the Iterative 
Filtering algorithm via straight isotropic convolution is unstable and causes a strong 
energy injection, while the error associated with the SIF decomposition is bounded, 
having its minimum when the stopping criterion is achieved after 5 iterations. The right 
panel of Fig. 5 confirms the presence of eigenvalues with negative real parts in the 
spectrum of the matrix B used in this example.

5. Conclusions

Given the importance of developing new nonlinear algorithms for the decomposition 
of spherical data sets, in this work, we tackled the problem of extending the Iterative 
Filtering (IF) algorithm to the case of the sphere and studying its a priori convergence. 
After reviewing the basic properties of IF for the one-dimensional case, we introduce 
its extension to spherical domains in the continuous and discrete case. We leverage the 
theory of spectral symbols to study the convergence property of this extension of IF 
to the sphere. In particular, we have studied how to characterize spectrally the matrix 
associated with the discrete sifting operator in the spherical iterative filtering. From this 
analysis, we discover that the spherical iterative filtering algorithm is not guaranteed 
to converge, at least if we use conic filters. Following what was done in the literature 
for stabilizing the adaptive local iterative filtering, in this work we propose to stabilize 
the algorithm by multiplying the sifting operator times its transpose on the left. In 
doing so, the spectrum of the new operator is guaranteed to be real and contained in 
the interval [0, 1], hence the algorithm converges a priori. We have presented numerical 
pieces of evidence of all these results in the numerical section. It is still an open question 
how to interpret from a physical point of view this new operator. We plan to tackle 
this problem, together with the possible acceleration of the spherical iterative filtering 
algorithm in future work.
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Appendix A. GLT theory

A.1. Theory of 2-level generalized locally Toeplitz sequences

Here we recall the basic notions, results, and concepts of 2-level GLT sequences and 
linked subjects, without going too much into technical details. All the results we report in 
this section can be found more in detail in [66, Chapter 6], altogether with an extensive 
and complete discussion about the GLT sequences and an extension to d-level matrix 
sequences.

When dealing with multilevel sequences, matrices, and vectors, we will use the multi-
index notation. A multi-index i ∈ N2 is simply a vector in N2; its components are 
denoted by i1, i2. If we write X = [xij ]ni,j=1, then X is a N2 × N2 matrix whose com-
ponents are indexed by two 2-indices i, j, both varying from 1 = (1, 1) to n = (N, N)
according to the lexicographic ordering. In this context, by a sequence of matrices (or 
matrix-sequence) we mean a sequence of the form {A(N)}N of dimension N2 ×N2. The 
entries of the matrix A(N) will be indexed by two 2-indices i = (i1, i2), j = (j1, j2), 
where 1 ≤ i1, i2, j1, j2 ≤ N .

A.1.1. Zero-distributed sequences
A sequence of matrices {Z(N)}N such that {Z(N)}N ∼σ 0 is referred to as a zero-

distributed sequence. In other words, {Z(N)}N is zero-distributed iff

lim
n→∞

1
N2

N2∑
F (σi(Z(N))) = F (0), ∀F ∈ Cc(R). (A.1)
i=1
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Given a sequence of matrices {Z(N)}N , with Z(N) of size N2×N2, the following property 
holds. In what follows, we use the natural convention C/∞ = 0 for all numbers C.

Z 2. {Z(N)}N ∼σ 0 if there exists a p ∈ [1, ∞] such that

lim
n→∞

N−2/p‖Z(N)‖p = 0,

where ‖ · ‖p is the p-Schatten norm.

A.1.2. Approximating classes of sequences and spectral clustering
The space of matrix-sequences also presents a metric structure, induced by a distance 

inspired from the concept of Approximating Class of Sequences (a.c.s.). In fact, a sequence 
of matrix-sequences {B(N)

m }N is said to be an a.c.s. for {A(N)}N if there exist {E(N)
m }N

and {R(N)
m }N such that for every m there exists Nm with

A(N) = B(N)
m + E(N)

m + R(N)
m , ‖E(N)

m ‖ ≤ ω(m), rk(R(N)
m ) ≤ N2c(m)

for every N > Nm, and

ω(m) m→∞−−−−→ 0, c(m) m→∞−−−−→ 0.

In this case, we say that {B(N)
m }N is a.c.s. convergent to {A(N)}N , and we use the 

notation {B(N)
m }N a.c.s.−−−→ {A(N)}N . In other words, {B(N)

m }N converges to {A(N)}N if 
the difference {A(N) − B

(N)
m }N can be decomposed into {E(N)

m }N of ‘small norm’ and 
{R(N)

m }N of ‘small rank’.
We enunciate the main property of the a.c.s. we will need in the following.

ACS 4. Let p ∈ [1, ∞] and assume for each m there is Nm such that, for N ≥ Nm,

‖A(N) −B(N)
m ‖p ≤ ε(m,N)N2/p, lim

m→∞
lim sup
N→∞

ε(m,N) = 0.

Then {B(N)
m }N a.c.s.−→ {A(N)}N .

Definition 7 (Clustering of a sequence of matrices). Let {A(N)}N be a sequence of matri-
ces, with A(N) of size N2×N2. We say that {A(N)}N is strongly clustered at zero (in the 
sense of the eigenvalues), or equivalently that the eigenvalues of {A(N)}N are strongly 
clustered at zero, if, for every ε > 0, the number of eigenvalues of A(N) of magnitude 
greater than ε is bounded by a constant Cε independent of N ; that is, for every ε > 0,

#{j ∈ {1, . . . , dn} : |λj(An)| > ε} = O(1). (A.2)
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By replacing “eigenvalues” with “singular values” and λj(An) with σj(An) in (A.2), we 
obtain the definitions of a sequence of matrices strongly clustered at zero in the sense of 
the singular values.

A.1.3. Multilevel GLT
We now recall the theory of the multilevel generalized locally Toeplitz (GLT) sequences 

and symbols. A 2-level GLT sequence {A(N)}N is a special 2-level matrix-sequence 
equipped with a measurable function κ : [0, 1]2 × [−π, π]2 → C, the so-called GLT 
symbol. Unless otherwise specified, the notation

{A(N)}N ∼GLT κ

means that {A(N)}N is a 2-level GLT sequence with symbol κ. We report here the main 
properties of the GLT space we will make use of in this document.

GLT 1. If {A(N)}N ∼GLT κ then {A(N)}N ∼σ κ.
GLT 2. If {A(N)}N ∼GLT κ and {A(N)}N = {X(N)}N + {Y (N)}N , where

• every X(N) is Hermitian,
• N−1‖Y (N)‖F → 0,
then {A(N)}N ∼λ κ.

GLT 3. Here we list three important examples of GLT sequences.
• Given a function f in L1([−π, π]q), its associated Toeplitz sequence is {T (N)(f)}N , 

where the elements are multidimensional Fourier coefficients of f :

T (N)(f) = [fi−j ]ni,j=1, fk = 1
(2π)q

π∫
−π

f(θ)e−ik·θdθ.

{T (N)(f)}N is a GLT sequence with symbol κ(x, θ) = f(θ).
• Given an almost everywhere continuous function, a : [0, 1]q → C, its associated 

diagonal sampling sequence {D(N)(a)}N is defined as

D(N)(a) = diag
({

a

(
i

n

)}n

i=1

)
.

{D(N)(a)}N is a GLT sequence with symbol κ(x, θ) = a(x).
• Any zero-distributed sequence {Z(N)}N ∼σ 0 is a GLT sequence with symbol 

κ(x, θ) = 0.
GLT 4. If {A(N)}N ∼GLT κ and {B(N)}N ∼GLT ξ, then

• {(A(N))H}N ∼GLT κ, where (A(N))H is the conjugate transpose of A(N),
• {αA(N) + βB(N)}N ∼GLT ακ + βξ for all α, β ∈ C,
• {A(N)B(N)}N ∼GLT κξ.

GLT 7. {A(N)}N ∼GLT κ if and only if there exist GLT sequences {B(N)
m }N ∼GLT κm

such that κm converges to κ in measure and {B(N)
m }N a.c.s.−−−→ {A(N)}N as m → ∞.
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A.2. GLT symbol of spherical IF

A.2.1. Area and diameter of Si,j

From classical Taylor expansion of trigonometrical functions, we get

sin(a + ε) = sin(a) + ε cos(a) − ε2

2 sin(a) − ε3

6 cos(a) + ε4

24 sin(a) + O(ε5),(A.3)

cos(a + ε) = cos(a) − ε sin(a) − ε2

2 cos(a) + O(ε3), (A.4)

arccos(1 − ε) =
√

2ε + O(
√
ε3),

√
a + ε =

√
a + 1

2
√
a
O(ε). (A.5)

Moreover, all the O(εα) terms above are actually bounded in absolute value by cεα where 
c is an absolute constant not depending on ε, α or a. From now on the same will hold 
true for all the O(·) terms in this document.

Area Recall that in polar coordinates, the differential of the normalized area measure 
is

dσ = cos(ϕ)dθdϕ/(4π). (A.6)

Let us now compute the area and diameter on S2 for each Si,j .

σ(Si,j) =
∫

χSi,j
(z)dσ(z) = 1

4π

π/2∫
−π/2

2π∫
0

χSi,j
(z) cos(ϕ)dθdϕ

and by the definition of Si,j in (12),

σ(Si,j) = 1
4π

−π/2+jh∫
−π/2+(j−1)h

2ih∫
2(i−1)h

cos(ϕr)dθrdϕr

= h

2π (cos((j − 1)h) − cos(jh)) .

Eventually, exploiting the Taylor expansion of the cosine function (A.4),

σ(Si,j) = h2

2π sin(jh) + O(h3). (A.7)

Diameter The couple of most distant points within Si,j is (vi,j , ui,j), the opposite cor-
ners of the rectangle, in polar coordinates,

vi,j = (2(i− 1)h,−π/2 + (j − 1)h), ui,j = (2ih,−π/2 + jh)
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so its diameter is the arccosine of di,j , where by (10),

di,j = cos((j − 1)h) cos(jh) + sin((j − 1)h) sin(jh) cos(2h).

Expanding both sine and cosine as in (A.3) and (A.4) respectively, we get

di,j =
[
cos(jh) + h sin(jh) − h2

2 cos(jh)
]
cos(jh)

+
[
sin(jh) − h cos(jh) − h2

2 sin(jh)
]
sin(jh)

[
1 − 2h2

]
+ O(h3)

= 1 − h2

2 − 2h2 sin(jh)2 + O(h3)

and using (A.5), we get the following formula for the diameter

diam(Si,j) = arccos(di,j) = arccos
(

1 − h2

2 − 2h2 sin(jh)2 + O(h3)
)

= h
√

1 + 4 sin(jh)2 + O(h2). (A.8)

A.2.2. Fixed diagonal
We now fix integers (t, s) with 0 ≤ |t|, |s| ≤ N to estimate the distance between zi,j

and zi−t,j−s defined in (11) for i, j, i − t, j− s positive integers less than N . We will only 
compute the first nonzero order of the distance with respect to h in the limit N → ∞
or equivalently h → 0. From (11), we get

zi,j = ((2i− 1)h,−π/2 + (j − 1/2)h) ,

zi−t,j−s = ((2i− 2t− 1)h,−π/2 + (j − s− 1/2)h)

and it is easy to see that dj,t,s does not depend on i, where dj,t,s := cos(d(zi,j , zi−t,j−s))
and by (10),

dj,t,s = cos((j − 1/2)h) cos((j − s− 1/2)h)

+ sin((j − 1/2)h) sin((j − s− 1/2)h) cos(2th).

Using classical trigonometric identities, we can rewrite it as

dj,t,s = cos((j − 1/2)h) cos((j − s− 1/2)h) + sin((j − 1/2)h) sin((j − s− 1/2)h) cos(2th)

= 1
2

[
cos(sh) + cos((2j − s− 1)h)

]
+ 1

2

[
cos(sh) − cos((2j − s− 1)h)

]
cos(2th)

= cos(sh) − 1
2

[
cos(sh) − cos((2j − s− 1)h)

][
1 − cos(2th)

]
. (A.9)

Expanding the trigonometric functions following (A.3), (A.4), we see that
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dj,t,s = cos(sh) − 1
2

[
cos(sh) − cos((2j − s− 1)h)

][
1 − cos(2th)

]
= 1 − 1

2s
2h2 − 1

2

[
1 − cos(2jh) + sin(2jh)(s + 1)h

][
2t2h2

]
+ s4O(h4) + t4O(h4) + s2t2O(h4) + (s + 1)2t2O(h4)

= 1 − 1
2h

2
[
s2 + 4t2 sin(jh)2 + 2t2(s + 1) sin(2jh)h

]
+ s2

[
s2 + t2

]
O(h4) + t4O(h4) + (s + 1)2t2O(h4). (A.10)

Here we need to distinguish the cases in which s = 0 from the cases where |s| > 0.

Case s = 0 Consider first the case s = 0 and recall that 1 ≤ i, j ≤ N . From (A.9),

dj,t,0 = 1 − 1
2

[
1 − cos((2j − 1)h)

][
1 − cos(2th)

]
.

Notice that if we reflect with respect to the equator, i.e. we substitute j with N + 1 − j, 
the quantity does not change since

cos((2j − 1)h) = cos(2π + (1 − 2j)h) = cos((2(N + 1 − j) − 1)h),

so from now on we suppose j ≤ N/2 that implies, by concavity of the sin function on 
[0, π/2], sin(jh) ≥ 2jh/π ≥ 2h/π. By (A.10),

dj,t,0 = 1 − 1
2h

2
[
4t2 sin(jh)2 + 2t2 sin(2jh)h

]
+ t4O(h4).

Using (A.5),

d(zi,j , zi−t,j) = arccos(dj,t,0) = arccos
(
1 − 2t2h2 sin(jh)2 + t2h3 sin(2jh) + t4O(h4)

)
=
√

4t2h2 sin(jh)2 − 2t2h3 sin(2jh) + t4O(h4) + t3O(h3)

= 2|t|h sin(jh) + t2 sin(2jh)O(h3) + t4O(h4)
4th sin(jh) + t3O(h3)

= 2|t|h sin(jh) + tO(h2) + t3O(h3)
2h/π + t3O(h3) = 2|t|h sin(jh) + t3O(h2).

(A.11)

If we now consider the indices j > N/2, we find that

d(zi,j , zi−t,j) = d(zi,N+1−j , zi−t,N+1−j) = 2|t|h sin((N + 1 − j)h) + t3O(h2)

= 2|t|h sin((j − 1)h) + t3O(h2) = 2|t|h sin(jh) + t3O(h2)

so (A.11) holds for any j. Notice moreover that if t is zero, then the above formula 
correctly reports that the distance is zero.
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Case s �= 0 Suppose now that s �= 0 and in particular |s| ≥ 1. From (A.10)

dj,t,s = 1 − 1
2h

2
[
s2 + 4t2 sin(jh)2 + 2t2(s + 1) sin(2jh)h

]
+ s2

[
s2 + t2

]
O(h4) + t4O(h4) + (s + 1)2t2O(h4)

= 1 − 1
2h

2
[
s2 + 4t2 sin(jh)2

]
+ t2(s + 1)O(h3)

+ s2
[
s2 + t2

]
O(h4) + t4O(h4) + (s + 1)2t2O(h4).

Since |s|, |t| ≤ N and h = π/N , then tO(h), sO(h) and (s + 1)O(h) are all O(1), so

t2(s + 1)O(h3) + s2
[
s2 + t2

]
O(h4) + t4O(h4) + (s + 1)2t2O(h4) = (|s| + |t| + 1)3O(h3)

and thus

dj,t,s = h2

2
[
s2 + 4t2 sin(jh)2

]
+ (|s| + |t| + 1)3O(h3)

= (s2 + t2)O(h2) + (|s| + |t| + 1)3O(h3) = (|s| + |t| + 1)2O(h2).

Using now that s �= 0 we see that 
[
s2 + 4t2 sin(jh)2

]−1 ≤ 1/|s| ≤ 1, so

d(zi,j , zi−t,j−s) = arccos
(

1 − h2

2
[
s2 + 4t2 sin(jh)2

]
+ (|s| + |t| + 1)3O(h3)

)
= h

√
[s2 + 4t2 sin(jh)2] + (|s| + |t| + 1)3O(h) + (|s| + |t| + 1)3O(h3)

= h
√

s2 + 4t2 sin(jh)2 + (|s| + |t| + 1)3√
s2 + 4t2 sin(jh)2

O(h2) + (|s| + |t| + 1)3O(h3)

= h
√

s2 + 4t2 sin(jh)2 + (|s| + |t| + 1)2O(h2). (A.12)

Notice that we can combine (A.12) and (A.11) into one formula that holds for any s, t, j, 
i.e.

d(zi,j , zi−t,j−s) = h
√

s2 + 4t2 sin(jh)2 + (|s| + |t| + 1)3O(h2). (A.13)

A.2.3. Normalization and support of the filter
Let the filters fr(w) be defined as

fr(w) := 1
C

(R− d(r, w))+

where r, w are points on S2 and (a)+ := max(0, a). C is a constant meant to normalize 
the function fr(w) with respect to the measure σ. R > 0 is the radius of the function, 
and it’s supposed to be less than π, so that the support of fr is not the whole S2.
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Norm of the filter Since the norm of fr does not depend on the point r, one can suppose 
that r = (0, π/2) are its polar coordinates, so its norm will be

‖fr‖ = 1 = 1
C

∫
(R− d(r, w))+dσ(w) = 1

4πC

π/2∫
−π/2

2π∫
0

(R− d(r, w))+ cos(ϕw)dθwdϕw

= 1
4πC

π/2∫
−π/2

2π∫
0

(R− π/2 + ϕw)+ cos(ϕw)dθwdϕw

= 1
2C

π/2∫
π/2−R

(R− π/2 + ϕw) cos(ϕw)dϕw

= 1
2C

⎡⎢⎣[(R− π/2 + ϕw) sin(ϕw)]π/2π/2−R −
π/2∫

π/2−R

sin(ϕw)dϕw

⎤⎥⎦
= 1

2C [R− sin(R)] .

This proves that C = (R− sin(R))/2 and thus the final expression of the filter function 
is

fr(w) = 2(R− d(r, w))+

R− sin(R) . (A.14)

Support of the filter Notice that fr(w) �= 0 if and only if d(r, w) < R. Since arccos(x)
is a strictly decreasing function on [−1, 1], then it is equivalent to

sinϕr sinϕw + cosϕr cosϕw cos(θr − θw) > cos(R) ≥ 1 −R2/2.

As a consequence fr(w) �= 0 implies that

R2

2 > 1 − sinϕr sinϕw − cosϕr cosϕw cos(θr − θw)

= 1 − cos(Δϕ) + cosϕr cosϕw[1 − cos(Δθ)]

≥ 1
5 [Δ2

ϕ + cosϕr cosϕwΔ2
θ] (A.15)

where Δϕ = |ϕr − ϕw| and Δθ = min{|θr − θw|, 2π − |θr − θw|} are both in [0, π] and 
1 − cos(x) ≥ x2/5 for x ∈ [0, π]. Suppose now that R = mh with m being an absolute 
constant. We take r = zi,j and w = zi−t,j−s with i, j, i − t, j − s integers between 1 and 
N , that in particular imply |t|, |s| ≤ N − 1. Call j̃ := j − 1/2 ≥ 1/2 and assume that 
fr(w) �= 0. From (A.15), and (11),
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5R2 = 5m2h2 > 2[Δ2
ϕ + cosϕr cosϕwΔ2

θ]

> 2[s2h2 + sin(j̃h) sin((j̃ − s)h) min{2|t|h, 2π − 2|t|h}2]

=⇒ 5m2 > 2[s2 + 4 sin(j̃h) sin((j̃ − s)h) min{|t|, N − |t|}2]

=⇒ 3m2 > s2 + 4 sin(j̃h) sin((j̃ − s)h) min{|t|, N − |t|}2

Notice that in this case |s| <
√

3m, i.e. fzi,j (zi−t,j−s) is non-zero at most for a finite 
number of different values of the integer s. Since h = π/N ≤ π,

sin(x− h/2)
sin(x) ≥ cos(h/2) − sin(h/2) tan(h)−1 = 1

2 cos(h/2) ≥ 1
2 ∀ π ≥ x ≥ h

so we find that

3m2 > s2 + sin(jh) sin((j − s)h) min{|t|, N − |t|}2. (A.16)

A.2.4. The discrete isotropic convolution and its symbol candidate
First, we show that the matrix sequence {B(N)}N defined in (14) is zero-distributed 

as in (A.1) and all its eigenvalues are strongly clustered at zero (see (A.2)).

Lemma 3. If the radius R of the filter does not depend on N , then the sequence {B(N)}N
is zero-distributed and shows a strong cluster at zero both for the singular values and the 
eigenvalues. In particular, its spectral symbol is the zero function.

Proof. Notice that from the definition of the filter (A.14), |fz(w)| ≤ R/C for any z, w, 
so the general element of the matrix is bounded by

∣∣∣B(N)
(i,j),(p,q)

∣∣∣ ≤ 1
2πCRh2 sin(qh) + O(h3).

As a consequence, ‖B(N)‖2
F = O(1) and this is sufficient to conclude that the sequence is 

zero distributed (by Z2) and shows a strong cluster at zero both for the singular values 
and the eigenvalues (See Theorems 2, 3 from [67]). Its spectral symbol can be proved to 
be the zero function by GLT 2. �

To get a better understanding of the spectral properties of the matrix, we have to 
suppose that RN is an absolute constant for any N , meaning that R depends on N . 
Once this assumption is made, we can fix a 2-level diagonal (t, s) in B(N), and focus 
on the set of entries B(N)

(i,j),(p,q) for which i − p = t and j − q = s. Our aim is to find a 

scalar function at,s : [0, 1]2 → C such that at,s(ih/π, jh/π) converges to B(N)
(i,j),(i−t,j−s)

uniformly in i, j.
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Lemma 4. Suppose R = mh with m constant. For any integer t, s let

at,s(x1, x2) := 6 sin(πx2)
(m−

√
s2 + 4t2 sin(πx2)2)+

m3π
. (A.17)

Then for fixed t, s

max
i,j:1≤i,j,i−t,j−s≤N

∣∣∣∣at,s( ih

π
,
jh

π

)
−B

(N)
(i,j),(i−t,j−s)

∣∣∣∣ = (|t| + 1)3O(h) → 0.

Proof. Let us thus expand each entry B(N)
(i,j),(i−t,j−s) for h → 0. Substituting (A.7) into 

(14), we get

B
(N)
(i,j),(i−t,j−s) = σ(Si−t,j−s)fzi,j (zi−t,j−s)

= 2
[
h2

2π sin((j − s)h) + O(h3)
]
fzi,j (zi−t,j−s).

Recall that by (A.16), if s ≥
√

3m then fzi,j (zi−t,j−s), and consequentially B(N)
(i,j),(i−t,j−s), 

is zero and in this case

at,s

(
ih

π
,
jh

π

)
= 6 sin(jh)

(m−
√
s2 + 4t2 sin(jh)2)+

m3π
= 0

so we only have to check the case |s| <
√

3m = O(1). By (A.3) and (A.14) we thus find 
that

B
(N)
(i,j),(i−t,j−s) = 2

[
h2

2π sin(jh) + O(h3)
]

(R− d(zi,j , zi−t,j−s))+

R− sin(R)

and substituting R = mh,

B
(N)
(i,j),(i−t,j−s) = 2

[
h2

2π sin(jh) + O(h3)
]

(mh− d(zi,j , zi−t,j−s))+

m3h3/6 + O(h5)

= 12
[

1
2π sin(jh) + O(h)

]
(m− d(zi,j , zi−t,j−s)/h)+

m3 + O(h2) .

Here we use 1/(m3 +O(h2)) = 1/m3 +O(h2), and (m −d(zi,j , zi−t,j−s)/h)+ ≤ m = O(1)
to see that

B
(N)
(i,j),(i−t,j−s) = 6

π
sin(jh) (m− d(zi,j , zi−t,j−s)/h)+

m3 + O(h). (A.18)

Substituting now the equation for the distance (A.13), and using that g(x) := (x)+ is a 
Lipschitz function, we get
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B
(N)
(i,j),(i−t,j−s) = 6 sin(jh)

(m−
√

s2 + 4t2 sin(jh)2 + (|s| + |t| + 1)3O(h))+

πm3 + O(h)

= 6 sin(jh)
(m−

√
s2 + 4t2 sin(jh)2)+

πm3 + (|s| + |t| + 1)3O(h)

where (|s| + |t| +1)3 = (|t| +1)3O(1) since we are in the case s = O(1). After substituting 
jh/π = x2, we eventually find the wanted function

at,s(x1, x2) := 6 sin(πx2)
(m−

√
s2 + 4t2 sin(πx2)2)+

m3π
. �

With the functions at,s(x) as defined in (A.17), let

κ(x,θ) :=
∑
t,s∈Z

at,s(x) exp(i(tθ1 + sθ2)) (A.19)

where the infinite sum converges punctually everywhere for x ∈ [0, 1]2, since for every 
x there are at most a finite number of non-zero at,s(x), and thus a finite number of 
addends. In fact at,s(x) �= 0 implies sin(πx2) �= 0, and consequently

m >
√
s2 + 4t2 sin(πx2)2 =⇒ m2

4 sin(πx2)2
> t2, m2 > s2 (A.20)

thus bounding both t and s to a finite number of integers. In the next sections, we prove 
that κ(x, θ) in (A.19) is actually the GLT and spectral symbol for the matrix-sequence 
{B(N)}N when RN is constant.

A.2.5. GLT symbol

Theorem 3. If RN is constant for any N , and B(N) is as in (14), then

{B(N)}N ∼GLT κ(x,θ) =
∑
t,s∈Z

at,s(x) exp(i(tθ1 + sθ2))

Proof. Call A(N)
M the banded matrices

A
(N)
M :=

∑
|t|,|s|≤M

D(N)(at,s(x))T (N)(ei(tθ1+sθ2))

that are GLT sequences with symbols {A(N)
M }N ∼GLT κM (x, θ) :=

∑
|t|,|s|≤M at,s(x) ×

ei(tθ1+sθ2) due to GLT3 and GLT4. In (A.20) we have already proved that κM (x, θ)
converge everywhere to κ(x, θ), so we only need to show that {A(N)

M }N a.c.s.−−−→ {B(N)}N
since by GLT7 it would automatically prove the thesis.
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Recall that by (A.17)

at,s(x1, x2) = 6 sin(πx2)
(m−

√
s2 + 4t2 sin(πx2)2)+

m3π

and by Lemma 4, (A.16) and (A.18),

B
(N)
(i,j),(i−t,j−s) = 6 sin(jh)

(m−
√

s2 + 4t2 sin(jh)2)+

πm3 + (|t| + 1)3O(h) (A.21)

= 6 sin(jh) (m− d(zi,j , zi−t,j−s)/h)+

πm3 + O(h) (A.22)

holds for any i, j, t, s such that 1 ≤ i, i − t, j, j − s ≤ N , |t| < N , |s| <
√

3m, otherwise it 
is zero. Suppose from now on that max{1, 

√
3m} < M ≤ N , so that we can write down 

the entries of A(N)
M as

[A(N)
M ](i,j),(i−t,j−s) =

{
at,s(ih/π, jh/π) = 6 sin(jh) (m−

√
s2+4t2 sin(jh)2)+

m3π , |s|, |t| ≤ M,

0, otherwise.
(A.23)

We now estimate the difference between A(N)
M and B(N) as

‖B(N) −A
(N)
M ‖2

F =
∑

|t|,|s|≤M

∑
i,j:

1≤i,i−t,j,j−s≤N

∣∣∣B(N)
(i,j),(i−t,j−s) − [A(N)

M ](i,j),(i−t,j−s)

∣∣∣2

+
∑

N>|t|>M

∑
|s|≤

√
3m

∑
i,j:

1≤i,i−t,j,j−s≤N

∣∣∣B(N)
(i,j),(i−t,j−s)

∣∣∣2

where the second multi-sum has no elements with |s| > M >
√

3m because that would 
lead to B(N)

(i,j),(i−t,j−s) = 0. The first term is easy to bound thanks to (A.21) and (A.23).

∑
|t|,|s|≤M

∑
i,j:

1≤i,i−t,j,j−s≤N

∣∣∣B(N)
(i,j),(i−t,j−s) − [A(N)

M ](i,j),(i−t,j−s)

∣∣∣2

=
∑

|t|,|s|≤M

∑
i,j:

1≤i,i−t,j,j−s≤N

(|t| + 1)6O(h2) = O(1).

For the second term, we notice that the expression in (A.22) does not depend on i, since 
d(zi,j , zi−t,j−s) = dj,t,s as in (A.9), and that for a fixed t, there are at most n −|t| indices 
i such that 1 ≤ i, i − t ≤ N , so

∑
N>|t|>M

∑
|s|≤M

∑
i,j:

∣∣∣B(N)
(i,j),(i−t,j−s)

∣∣∣2

1≤i,i−t,j,j−s≤N
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=
∑

N>|t|>M

∑
|s|≤M

∑
i,j:

1≤i,i−t,j,j−s≤N

36 sin(jh)2

π2m6

[
(m− d(zi,j , zi−t,j−s)/h)+

]2 + O(h)

≤
∑

N>|t|>M

∑
|s|≤M

∑
j:

1≤j,j−s≤N

(N − |t|)36 sin(jh)2

π2m4 + O(1)

=
∑

N>|t|>M

∑
1≤j≤N

(N − |t|)36(2M + 1) sin(jh)2

π2m4 + O(1)

Now we split the sum in j depending on whether min{j, N − j} ≤ 2
√

3m or not. If it 
holds, then

sin(jh) = sin((N − j)h) ≤ 2
√

3mh = O(h)

and

∑
N>|t|>M

∑
j:min{j,N−j}≤2

√
3m

(N − |t|)36(2M + 1) sin(jh)2

π2m4 + O(1)

=
∑

N>|t|>M

∑
j:min{j,N−j}≤2

√
3m

O(1) = O(N)

Otherwise, we have 2
√

3m < j < N − 2
√

3m and in particular, N > 4
√

3m. Keeping in 
mind that |s| ≤

√
3m, then

sin((j − s)h)
sin(jh) = cos(sh) − sin(sh) tan(jh)−1

≥
{

cos(sh) − sin(sh) tan(2
√

3mh)−1 s ≥ 0
cos(sh) − sin(sh) tan(−2

√
3mh)−1 s < 0

= sin((2
√

3m− |s|)h)
sin(2

√
3mh)

≥ sin(
√

3mh)
sin(2

√
3mh)

= 1
2 cos(

√
3mh)

≥ 1
2 .

By the relation (A.16), the entry B(N)
(i,j),(i−t,j−s) is zero when

min{|t|, N − |t|}2 sin(jh) sin((j − s)h) ≥ min{|t|, N − |t|}2 sin(jh)2/2 ≥ 3m2 ≥ 3m2 − s2

(A.24)
so we can restrict the index t to min{|t|, N − |t|} <

√
6m/ sin(jh) in the sum and find 

that

∑ ∑
√ √

(N − |t|)36(2M + 1) sin(jh)2

π2m4 + O(1)

N>|t|>M 2 3m<j<N−2 3m
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=
∑

2
√

3m<j<N−2
√

3m

∑
N>|t|>M

min{|t|,N−|t|}<
√

6m/ sin(jh)

(N − |t|) sin(jh)2O(1) + O(1)

≤
∑

2
√

3m<j<N−2
√

3m

2
[
N

( √
6m

sin(jh) −M + 1
)+

+ 6m2

sin(jh)2

]
sin(jh)2O(1) + 1

sin(jh)O(1)

≤
∑

1≤j<N

(√
6m− (M − 1) sin(jh)

)+
sin(jh)O(N) + O(1) + 1

sin(jh)O(1).

Since sin(jh) = sin((N − j)h), we can bound the sum by doubling it and stop the index 
at j = �N/2�. Under this hypothesis we have the bounds jh ≥ sin(jh) ≥ 2jh/π leading 
to 

∑�N/2�
j=1 1/ sin(jh) ≤

∑�N/2�
j=1 π/(2jh) = O(N log(N)) and

∑
N>|t|>M

∑
2
√

3m<j<N−2
√

3m

(N − |t|)36(2M + 1) sin(jh)2

π2m4 + O(1)

≤

⎡⎣ ∑
1≤j≤�N/2�

(√
6m− 2(M − 1)h

π
j

)+

jO(1)

⎤⎦+ O(N log(N)).

≤

⎡⎢⎣ ∑
1≤j<

√
6πm

2(M−1)h

√
6m · jO(1)

⎤⎥⎦+ O(N log(N))

≤ 6π2m2

4(M − 1)2h2O(1) + O(N log(N)) = 1
(M − 1)2O(N2) + O(N log(N)).

Putting all the terms together, we find that

‖B(N) −A
(N)
M ‖2

F = O(1) + O(N) + 1
(M − 1)2O(N2) + O(N log(N))

=
[

1
(M − 1)2O(1) + O

(
log(N)

N

)]
·N2

and we conclude thanks to ACS4 with p = 2 and

lim
M→∞

lim sup
N→∞

ε(M,N) = lim
M→∞

lim sup
N→∞

√
1

(M − 1)2O(1) + O

(
log(N)

N

)
= 0. �

Notice that in particular this shows that in the hypotheses of Theorem 3, {B(N)}N ∼σ

κ(x, θ) by GLT1.
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A.2.6. Spectral symbol
Here we show that {B(N)}N has spectral symbol κ(x, θ). To do so, we need to prove 

that it is close enough to a Hermitian matrix in Frobenius norm, i.e. its skew-Hermitian 
part is small, and conclude thanks to GLT2.

Theorem 4. If RN is constant for any N , and B(N) is as in (14), then

{B(N)}N ∼λ κ(x,θ) =
∑
t,s∈Z

at,s(x) exp(i(tθ1 + sθ2))

Proof. Let E(N) be 2 times the skew-Hermitian part of B(N), i.e. E(N) := B(N) −
[B(N)]H . By (A.16), if |s| ≥

√
3m then the elements B(N)

(i,j),(i−t,j−s) and [B(N)]H(i,j),(i−t,j−s)

= B
(N)
(i−t,j−s),(i,j) are both zero, so E(N)

(i,j),(i−t,j−s) is zero too and thus we can focus on the 

case s <
√

3m = O(1). By definition (14), equation (A.18) and using that the distance 
d(r, w) is symmetric in r, w, we have

E
(N)
(i,j),(i−t,j−s) = 6[sin(jh) − sin((j − s)h)] (m− d(zi,j , zi−t,j−s)/h)+

πm3 + O(h)

but since |s| <
√

3m,

| sin(jh) − sin((j − s)h)| = | sin(jh)[1 − cos(sh)] + cos(jh) sin(sh)|

≤ |1 − cos(sh)| + | sin(sh)| ≤ s2h2

2 + sh

and thus E(N)
(i,j),(i−t,j−s) = O(h). As a consequence, its Frobenius norm is bounded by

‖E(N)‖2
F =

∑
|s|<

√
3m

∑
|t|<N

∑
i,j:

1≤i,i−t,j,j−s≤N

∣∣∣E(N)
(i,j),(i−t,j−s)

∣∣∣2 = N3O(h2) = O(N) = o(N2).

If B̃(N) := (B(N) + [B(N)]H)/2 is the Hermitian part of B(N), then

‖B(N) − B̃(N)‖2
F = 1

4‖E
(N)‖2

F = o(N2)

and since {B(N)}N ∼GLT κ(x, θ) by Theorem 3, then κ(x, θ) is also the spectral symbol 
of {B(N)}N thanks to GLT2. �
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